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ABSTRACT 

The main result is a metrical characterization of superreflexivity in Banach 
spaces. A Banach space X is not  superrefiexive if and only if X contains 
hyperbolic trees as a metric space. The  notion of non-linear cotype in discussed. 

1. Introduction 

If follows in particular from Ribe's result [8], stating that uniformly 

homeomorphic Banach spaces are finitely representable in each other, that the 

notions from local theory of normed spaces are determined by the metric 

structure of the space and thus have a purely metrical formulation. The next step 
consists in studying these metrical concepts in general metric spaces in an 

attempt to develop an analogue of the linear theory. A detailed exposition of this 
program will appear in J. Lindenstrauss's forthcoming survey paper [5]. We also 
refer the reader to this paper and to [6] for notions which are not defined here. 

Recall that in our "dictionary" linear operators are translated in Lipschitz maps, 

the operator norm by the Lipschitz constant of the map 

dist(F(x), F(y )) 
tlfllL,p = sup x,,y dist(x, y) 

where "dist" is taken in the appropriate metric space. The translations of 

"Banach-Mazur distance" and "finite-representability" in linear theory are 

immediate. At the roots of the local theory of normed spaces are properties such 

as type, cotype, superreflexivity, .. .  related to the geometry of the unit bali. The 

analogue of type in the geometry of metric spaces is the fact that Hamming cubes 
are not uniformly embeddable in the given metric space. This result was proved 
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and elaborated in [2]. A simple metrical invariant replacing the notion of cotype 

was not yet discovered. A natural construction indicated to the author by W. B. 

Johson consists in looking at the Lipschitz-dual of the metric space X, d which is 

the Banach space Lip(X) of real-valued Lipschitz functions on X with norm 

rf(x)-f(y)l II f IIc,p :, = sup x,,y d(x, y) 

and to study the cotype of the dual space (Lip X)*. An immediate difficulty with 

this approach is the fact that the geometry of spaces of Lipschitz functions is very 

poorly understood and in particular it is an unsolved problem whether the dual 

of the space of Lipschitz functions on the square [0, 1] x [0, 1] has a finite cotype. 

However, in an appendix to this paper, we prove that (Lip X)* has no bounded 

cotype when X is taken to be the Hamming cube. Since the Hamming cubes are 

the metrical analogues of the U,-spaces (n = 1,2 . . . .  ), this observation means 

that the previous approach is not satisfactory in this simple form. The main result 

of the paper is the metrical substitute for superreflexivity. For J = 1,2 . . . . .  

denote llj = {1, - 1} j and Tj = Ur<A-lr, T = U~=, T~. Thus T, is the finite tree 

with j levels and T the infinite tree. The graph on T corresponding to the 

tree-structure induces a metric p (the hyperbolic distance). The metric on T, is 

the restriction of p. 

THEOREM 1. A Banach space X is not superreflexive if and only if the trees Tj 
admit a uniform Lipschitz embedding in X, thus iff t is finitely represented in X as 
metric space. 

Let M, p be a compact metric space. We define the corresponding hyperbolic 

space /~/, /5 by iV/= M x {1,2, 3 . . . .  } with distance 

~ ( ( x , t ) , ( x ' , t ' ) ) = l t = t ' l +  ~. min(1, Tp(x, x')). 
0<s-<min( t , l  ') 

COROLLARY 2. I f  M is infinite, ~4 is embeddable in no superreflexive space. 

This result originates in the problem raised by M. Gromov (personal com- 

munication) whether or not there is Lipschitz embedding of the hyperbolic tree 

in Hilbert space. The author is indebted to him for some valuable discussions 

about these questions. 

In the next sections we prove the necessity and sufficiency of the condition 

stated in Theorem 1. The proofs are particularly simple and make essential use 

of characterizations of superreflexivity of Banach spaces due to R. C. James 
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([3], [4]) and G. Pisier [7]. The last section is the remark related to non-linear 

cotype which we indicated earlier. 

2. Non-embeddability of trees in superreflexive space 

The argument is an adaptation of the proof in case of Hilbert space ([1]). 

Recall the following fact ([7], Lemma 3.1). 

LEMMA 1. Given a superreflexive space X, there is p < ~ and C < oo such that 

if (sc~)s:~.2.. is an X-valued martingale on some probability space 12, then 

(a) ~. II~+,- ~ I1~- -< c sup II~ I1~ 
s 

where II lip stands for the norm in LPx(II). 

Actually, our martingales will be standard diadic Walsh-Paley martingales. 

The proof of Lemma 1 uses the observation that the sequence ~2 -~ ,~3 -~2 ,  

. . . .  ~:~+, - ~ . . . .  is a basic sequence in the space L~(II) and R. C. James' estimates 

on basic sequences in superreflexive spaces [3, 4]. Notice that if X is a Hilbert 

space, then p = 2, C = 1. 

Lemma 1 is used to prove 

LEMMA 2. If  Xt . . . . .  Xj is a ]inite system of vectors in X, then with previous 

notations 

(2) inf l l l 2 x , - x j _ ~ - x . ~ l l -  < C(logJ)-"P sup IIx,+,- x, ll. 
d.d-~-j<~J-d l<<-j<~-J 

PROOF. Denote ~oC ~t  C . . .  C 9,  the algebras of intervals on [0,1] ob- 

tained by successive diadic refinements, letting J = 2'. Define the X-valued 

function 

= 2 )(.[j/J.(j+l)/J|(Xj+l -- Xj), X = indicator function 
l~j<--J-I 

and consider the expectations ~s =E[~  15~s] for s = 1 . . . .  ,r. Since ~s form a 

martingale ranging in X, Lemma 1 implies 

(3) C II ~ I1~ ~ ~ 11 ~s+l - -  ~s llg 
s = l  

where by construction 

(4) 1] ~ lip --< II ~ I1~ = sup II x;+, - x, II 
/ 
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and clearly 

11#,+1- ~,llg = 2-'+~2-P~ E 112x,.=.- x , _ , , e -  x,,+,,=,ll" 
1<=1<=2 t-s 

=> 2 - "  m i n  112x, - x , - e  - x ,+e I1". 
2s<=j<=J-2 s 

Combined with (3), (4), it follows that 

c sup II x,+, - x, II -> r"" min min 
j l<=s<r 2s<=j<=J-2 s 

and hence inequality (2). 

(2-' 112x, - xj-e - x,+e II) 

LEMMA 3. Denote 12 a probability space and [~, . . . ,  [j a sequence of functions 
in Lx(l l) .  Then 

1 1 = sup Ill,+, - t, I1o. (5) d,~C~J-dinf 12/j - f,-~ -/,+~ lie < C(log j ) - l l p  1<; ~J 

ProoF. Replace X by L~(D), for which (1) remains valid, and use (2). 

Lsmma 4. Let f~ . . . . .  [1 be X-valued functions on {1,-1} N where [~ only 
depends on e l , . . . ,  e;. Then there exists d, 1 <= j <= J - d and e E 12; - {1, - 1} j such 
that 

(6) f f a  IIh+~(e,a)-h+~(~,8')lldadS'<=Cd(log.O -''~ sup I1~+,-/~11~. 
a×fla i 

PROOF. By (5), there is d and d _ - < j = < J - d  such that 

112~ -~+d - t , -d  I1~ --- Ca(log J)-"" sup Ill ,+,-/,  I1~- 
i 

Write explicity 

112h - h - .  -/ ,+~ II, "=  r i o  112/,( ,)-  N-. ( , ) - / , + ~  (~, a ) lPd ,da  
ixlla 

implying 

2P [ 1 2 f / - / / - a -  f/+a I[~----> fffo [ [ f J + a ( e ' 8 ) - - f i + a ( g ,  8 ' )H  p d S d S ' d E ,  
iXf ld x f ld  

, fro 112h - h - .  - h+~ II. => ~ mi.n, I1~+~ (~, a ) -  h+. (e, a')ll dada', 
d xDd 

thus (6). 
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We are now ready to prove the first part of Theorem 1. Fix J and consider a 

one-to-one map F: Ts --~ X. Apply Lemma 4 to the functions [1 . . . . .  [j defined by 

)~(e)=F(eI j  ) f o r e E { 1 , - 1 }  ~. 

Notice that by definition of the metric p on Tj 

sup II/J+,- f~ II® = sup sup II F(e I J + 1)- F(~ I J)tl--II Fliup 
j e~ f lJ  l ~ j < J  

and similarly 

II ~ ÷~ (~, a) - ~+~ (~, a ')II ~ IIF-' I1:?~ p ((~, 8), (~, a')). 

Therefore 

Cd(logJ)- IlFllu, llF-'llLio > p((e, 8),(e, 8 ' ) )d$dS '~  d 
d X~d 

applying (6). Thus we get the following estimate on the distorsion of F, 

(7) dist(F) ~> (log J)'/E 

Thus in case of Hilbert space 

(8) dist(F) ~> (log j)1/2. 

As we will show in the next section, (8) is an optimal result. 

3. Embedding hyperbolic trees in non-superreflexive spaces 

If conversely X is not superreflexive, it is known that for arbitrarily large 

J = 1,2 . . . . .  there are vectors xl, x2 . . . . .  xr in the unit ball of X satisfying the 

condition 

(9) inf dist[conv(0, x~ . . . .  , x~), conv(xj+t, . . . ,  xx)] > t. 
I < j ~ K  

Let ~ :  Ts ---> {1,2 . . . . .  2 T M  - 1} be an enumeration such that any pair of segments 

in Tj starting at incomparable nodes (with respect to the tree ordering) are 

mapped inside disjoint intervals. 

Take x~ . . . . .  x2,÷, satisfying (9) and define F: Tj---> X by the formula 

F(~)  = ~'. x~.jr, ,  e ~ j ,  j<=J. 
j '<-j 

The reader will easily check that F has bounded distorsion. This completes the 
proof of Theorem 1. 
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In the case X = H = Hilbert space, an embedding of T~ in H with distorsion 

~ ( l o g J )  ~/2 can be constructed in the following way. Let {e, l e E Tj} be an 

orthonormal system in H and let for j -<_ J, e E ['/, 

(10) F(e ) = ~ (j - j '  + 1)'/2e, tc. 
j'~_/ 

It is then easily seen that the restriction of F to each level Iij in ~ is of bounded 

distorsion. However, the distorsion on branches of Tj is of order (log j)l/2, since 

for e E l~j 

[IF(e)- I J -  1)11 = 1 + ~ [ ( J - j  + 1) 1/2- ( j _ j ) ~ / 2 ] 2  log./. 
j<J 

REMARK. The level sets of T, p embed in R, d where 

d(x, y)-- log(l+ Ix -Yl). 

Now the metric space R, d embeds q-conformally in Hilbert space since d is 

quasi-concave with respect to the usual distance I x - y ] (see P. Assouad's thesis, 

Chapter IV for definitions and details). 

4. Appendix: Remark on the Lipschitz dual of the Hamming cube 

If X, d is a metric space, denote Lip(X) the Banach space of Lipschitz 

functions f on X with norm 

If(x)- f(y)l II f -- sup x~, d(x,y) 

Notice that by the extension theorem for Lipschitz functions, given a subset Y 

of X endowed with the induced metric, the restriction map gives a quotient 

mapqv:Lip(X)---)Lip(Y). The n-Hamming cube is the set fL={1,-1}" 

endowed with the metric p(~,e')=Z;=l[e/- E~[. We will prove the following 

fact: 

PROPOSITION 3. Lip(lq,) contains uni[ormly complemented l~-subspaces when 

n --> oo. Hence Lip([I.)* has no uni[ormly bounded cotype [or n ~ oo. 

Let us agree to denote for a given metric space Z, p by Z n the n-fold product 

space with metric p(£, Y)= Zl~j__<.p(xj, yj). If Z is a two-point set, we find the 

Hamming cube back. 

Denote Z~ the cyclic group Z/RZ of residue classes rood k endowed with the 

natural metric (which is the word-metric with respect to the generator e 2"/~). We 
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show that for k = 1 ,2 , . . .  there is a Lipschitz embedding of Zzk into [lk with 
distorsion 1. Hence, by a previous remark, the spaces fL in Proposition 3 may be 

replaced by the Hamming products [ZE]~ or, involving a discretization argu- 

ment, by the n-fold torus II" equipped with metric 

LEMMA 5. 

LEMMA 6. 

n - - )  oo 

p (0. ~,-) = E I e ,o, _ e '*'1. 

At this point, we are thus led to consider the Lipschitz space Lip(H ~). Notice that 

convolution with kernels of the form 

F(O)= ~I FN(O,), FN(O)=, ,~NN-IJ l  e"O = F6jer Kernel 
j=l N 

gives operators cN: Lip(II')---, W~'~(II n) satisfying 

lim c~,i = Id pointwise 

where W1"~(FI') --- W is the Sobolev space of functions f on II" with bounded 

partial derivatives Osf = Of/dOj and norm 

II f IIw = sup II a,f I1 , 

and i = W - ~  Lip(H ~) is the identity operator (isometric embedding). It results 

from this discussion that Proposition 3 is a consequence of the following two 

facts: 

Z2E embeds in flk. 

W'~'~(m ) contains uniformly complemented l[-subspaces for 

PROOF OF LEMMA 5. Consider the map F : {1, e 2~"zk . . . . .  eZ~'i(2k-I)/2k} ---> i'~k 

given by 

f ( e  2''~/:~) = (1 . . . . .  1, - 1 . . . . .  - 1) if a _-< k 

O/ 

and 

Clearly 

F(e  2'~'~'~k) = ( -  1 . . . . .  - 1, 1 , . . . ,  1) 

a'--k 

if a > k .  

p(F(e2~'~l~k), F(e~'~"zk))- k l e 2'~'~'2~- e:"~"2k I . 
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PROOF OF LEMMA 6. This is the heart of the matter. Fix an integer J and an 
enumerat ion tr t') (1 _-< s _<- 2 J) of lb .  Consider a rapidly increasing sequence kj 
and put 

[ A ( O ) =  1-I l + c o s k ,  ~ t r~"0 ,  . 
l<--_j~J s = l  

Thus A => 0 and f A (O)dO = 1 by the choice of the sequence kj. Take [ in W. 
Then 

(1) Ill * A Ilw N Ilfllw 

and [*  A has the form 

f* A :  [(0)+ ~=l{D,.+(O)exp [27rik,(,~ o'}S)0,) ] 

where Dj.÷, Dj_ have Fourier transform supported by 

i~<je,o'~"k,,...,~<je,(ri k,] e , = 0 , 1 , - l f o r l = < i < j  . 

It is clear that if kj grow fast enough 

O(f* a )~ 2"n'i ~ kjo'~" {Di.+('ff)exp [27riki ( ~ tr~)0~)] 

Therefore,  for fixed 0, by construction 

J 
max I O,,(f* A ) l -  ~ k, I Dj.+(0)exp[-" "1-  Di_(0)exp[ . . . .  ]1 

s' j=l 

and from (1) 

(2) I l f l lw>c k, D,÷(O)dff c ~ k, lf* A(k,o-I ') . . . .  - ,2,,~ = , = K j o r  i I • 
j= l  j= l  

Notice that from the definition of A 

(l) -- (2~)'~ (k/ r~ ' , . . . ,  k/rj~2"~j = ~1 t ~ j a j '  ; ' "  . . . . .  Kj~rj ,. 

By (2), we proved that the map 
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W---~ l~: f---~{kjf(k, tr~t',. ,2'~ . . ,  kj~r j )) ,~j~_j 

admits an absolute bound. Obviously (1/ki)exp[2~rikj (tr~'~01 + . . .  + o'7'~02J)] has 
norm 27r in W and is mapped on the jth unit-vector. 

This completes the proof. 
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